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Is one migrant per generation sufficient for the genetic
management of fluctuating populations?
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Abstract

Small isolated populations may face an increasing risk of extinction due to the loss of genetic diver-
sity. This increasing risk, though, may be offset by gene flow, provided the population receives an
adequate number of migrants per generation. We show that as temporal fluctuation in population size
(FPS) increases, so too does the required number of immigrants. This increase in the requisite num-
ber of immigrants arises because the ratio of census size to effective population size decreases with
increasing FPS. Because all populations fluctuate, our work extends a recent challenge to the widely
adopted one migrant per generation rule, which refers to the supposedly requisite number of immi-
grants. In a sample of 44 animal populations, ~60% of the populations fluctuated enough to require
>10 immigrants per generation to avoid a substantial loss of genetic diversity, and ~25% fluctuated
enough to require >20 immigrants per generation. We thus recommend that estimation of the requi-
site number of immigrants take into account fluctuation in population size.

Although genetic deterioration is a potentially important
component of extinction risk for isolated populations
(e.g. Allendorf & Leary, 1987; Frankham, 1995«; Czech
& Krausman, 1997; Newman & Pilson, 1997, Vucetich
& Waite, 1999), extensive theoretical analysis has sug-
gested that just one migrant per generation (OMPG) typ-
ically may be sufficient to offset genetic deterioration
within subpopulations (e.g. Wright, 1931; Slatkin,
1987), which could avert elevated extinction risk due to
genetic deterioration (Saccheri ef al., 1998). The ele-
gance of this guideline has probably contributed to its
adoption as a general rule for the genetic management
of conserved populations. Unfortunately, ‘several com-
pelling real-world factors suggest more than
[OMPG] may be necessary to achieve genetic goals’
(Mills & Allendorf, 1996). The OMPG rule strictly
applies only in the unrealistic (ideal) case where genet-
ically effective population size (V,) equals actual popu-
lation size (N). Because real populations are not ideal
(i.e. not characterized by random mating, even sex ratio,
constant population size and discrete generations
(Wright, 1931)), N, is usually less than N (Frankham,
1995¢), and hence, the actual number of migrants
required for genetic management routinely exceeds one.
Considering this and other limitations, Mills & Allendorf
(1996) recently concluded that ‘a minimum of 1 and a
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maximum of 10 migrants per generation would be an
appropriate general rule of thumb for genetic purposes.’
Whitlock & McCauley (1999) discuss similar issues
from a population genetics point of view.

Here, we evaluate this recommendation, recognizing
that temporal fluctuation in population size acting in con-
cert with other factors frequently causes N, to be much
less than N (Frankham, 1995¢; Vucetich, Waite &
Nunney, 1997). For example, fluctuations alone can
reduce N,/N to below 0.2 in approximately one-third of
the 44 natural animal populations analyzed (see Figure
1 in Vucetich et al., 1997). Our consideration of fluctu-
ations suggests that 1-10 migrants per generation may
often be inadequate. We provide managers with a
method for determining when >10 migrants per genera-
tion may be required.

N-MPG FOR FLUCTUATING POPULATIONS

The OMPG rule is based on the assumption that each
subpopulation in a metapopulation is ideal and hence N,
= N. To evaluate the importance of this restrictive
assumption, consider the inbreeding coefficient
(homozygosity) (F) of an isolated local population
assumed to be ideal (Hartl & Clark, 1989):

F, =ﬁ+ (lAﬁ)FH, (D

where N is the size of the subpopulation. If the popula-
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tion receives immigrants, then F, must be modified
accordingly (Hartl & Clark, 1989):

F, = Gy + (5p)F ) (1-m) 2

where m is the immigration rate. This expression is valid
when selection and mutation are unimportant, patterns
of migration are random (i.e. each individual has a con-
stant probability of moving among subpopulations)
among an infinite number of subpopulations, and
migrant and resident individuals have equal fitness (see
Mills & Allendorf, 1996; Whitlock & McCauley, 1999).
Collectively, these assumptions describe Wright’s
(1931) island model. Solving eqn (2) for the equilibrium
value yields (Hartl & Clark, 1989):

For @Nm + 1), (3)

when m is small. Since local populations are typically
not ideal, a more appropriate expression is:

Fsr 1

T @Nm + D), (4a)

where N, is the long-term effective size of the subpop-
ulation that receives immigrants. Because this expres-
sion represents the equilibrium value of F¢, N,
represents the long-term effective population size and
should account for fluctuations in population size. The
appropriateness of applying this equation to fluctuating
populations is supported by a recent coalescent analysis
(Hudson 1998 see also Rannala, 1996).

Theoretical analysis suggests that maintaining Fg; at
0.2 adequately conserves genetic diversity while allow-
ing for sufficient differentiation among subpopulations
(e.g. Vario, Chakraborty & Nei, 1986; Mills &
Allendorf, 1996; but see Lacy, 1987). Since N m repre-
sents the effective number of migrants per generation,
the OMPQG rule obtains when F¢ is set at 0.2. The effec-
tive number of migrants per generation is the actual
number of migrants per generation that would be
required to maintain Fg; at some specified level, if the
subpopulation under consideration were ideal (see Mills
& Allendorf, 1996 for further discussion). In principle,
N, can be expressed as oV, where « represents the long-
term N,/N ratio, where the denominator (N) is naturally
represented by the average population size (see eqn (9),
below). This ratio is usually <l and may be estimated
using a variety of demographic (e.g. Vucetich & Waite,
1998) and molecular genetic techniques (e.g. Waples,
1989; Jorde & Ryman, 1995). Thus, eqn (4a) can be
rewritten as:

Fgr ]

T @Nm+ D), (4b)

When Fg; is set to 0.2, the actual number of migrants,
Nm, is equal to 1/ac = (N,/N)"'. We emphasize that this
result relies on all of the assumptions of the OMPG rule,
except that N, does not necessarily equal N in the local
population.

Quantifying the relationship between the effective and

J. A. VUCETICH & T. A. WAITE

actual numbers of migrants is essential for the genetic
management of real populations. Here, we aim to quan-
tify this relationship on the basis of realistic models for
the long-term N,/N value of the local population.
Equations (1)—(4) show that the relationship between the
effective and actual numbers of migrants depends on the
relationship between the effective and actual sizes of the
local population. This property suggests that OMPG will
often be inadequate (Mills & Allendorf, 1996), since N,
is much less than N for most real populations (Frankham,
1995b; Vucetich et al., 1997).

To quantify this relationship between N, and N, we
begin by considering the factors that tend to influence
the N, of a local subpopulation. The N, of a subpopula-
tion is depressed by greater fluctuations in population
size (FPS), by variance in fecundity, by skew in sex ratio
and by a lesser overlap between generations. The influ-
ence of these factors on the long-term N, of a subpop-
ulation is described by (Vucetich et al., 1997):

)
(17 2)(In(10)0, )

5)

¢

where N is the arithmetic mean of the population size,
and FPS is measured by o,, the standard deviation of
the logarithm of population counts over a series of years
(or other intervals). In this equation, N,, /N, should be
replaced with a representative value for the short-term
ratio of effective size to census size (i.e. a value that
accounts for the influence of sex ratio, generation over-
lap and variance in fecundity on N, /N). Such a short-
term ratio is given by (Nunney, 1991):

N,/ N, = (6)
4r(1-+T)
A1+, )+ (1=r)A, (141, )+ (1= 1)1

bm

+rly,

where r is the sex ratio, T is the average generation time,
A; and A, are the average adult life spans for females
and males, I, and I, are the standardized variances in
adult life span, and I, and I,,,, are the standardized vari-
ances in reproductive success. If available, the harmonic
mean of a series of such ratios would be appropriate.
(Vucetich & Waite (1998:1028) were incorrect to state
that the arithmetic mean could be used for this purpose.)
Practical considerations for estimating the parameters of
eqns (5) and (6) are described elsewhere (Nunney &
Elam, 1994; Vucetich & Waite, 1998). Equation (5)
holds if the processes that govern eqn (6) are indepen-
dent of the processes that govern FPS, or if N/N can
reasonably be estimated as the product of the short-term
N, /N ratio (i.e. eqn (6)) and the N, /N ratio calculated
from the influence of FPS alone. The degree to which
real populations may violate this assumption has not
been evaluated. Equation (5), also based on the harmonic
mean, has been shown to approximate the harmonic
mean estimator (see Figure 3 in Vucetich et al., 1997
for comparisons between eqn (5) and harmonic mean
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estimates of N, /N for real animal populations). An
advantage of eqn (5) is that, in contrast to the harmonic
mean estimator, we have some knowledge about the dis-
tribution of o, for natural populations (Fig. 1).

To obtain an expression for the average (actual) num-
ber of immigrants required to maintain F¢; at 0.2, we
substitute the right side of eqn (5) (an expression for the
long-term N, of the local population) for N, in eqn (4a),
and then solve for Nm:

(2+(1n(10)0, )2)2(1 ~F)

Nom = 16(N,, / N, )F

(7

This equation relies on a more realistic model for the N,
of the local population than does the OMPG rule.
Otherwise, eqn (7) relies on the same set of restrictive
assumptions. For example, when the immigrant pool is
represented by a finite number of subpopulations, m is
scaled downward by the factor (s/(s—1))?, where s is the
number of subpopulations (Mills & Allendorf, 1996).
___Extensive demographic data are required to estimate
Nm from eqns (6) and (7). For example, an ongoing 38-
year study of the isolated wolf (Canis [upus) population
in Isle Royale National Park provides estimates of pop-
ulation size, sex ratio, survivorship and fecundity (e.g.
Peterson et al., 1998). These data yield estimates of 0.17
for N,, /N , and, coincidentally, 0.17 for ¢,. Based on
these values, eqn (7) predicts that 6.8 migrants per gen-
eration are required to maintain Fy at 0.2.

Such extensive demographic data are rarely available
and so management of conserved populations must be
based on the best information available. Unfortunately,
a common practice is to adopt the OMPG rule. Given
its dependence on the unrealistic assumption that

150
& 100
.
6]
s |
O
o
L 5
0 .

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Fluctuation in population size, o,

Fig. 1. Frequency distribution of ¢, for a sample of 202 real
animal populations (data from Figure 3.1 in Pimm, 1991). This
distribution provides the context for interpreting the x-axis of
Figures 2.3 and 4.
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N, = N, this approach is inadequate. Empirical evidence
suggests that, on average, N, = N/10 (Frankham, 1995¢).
When no information is available, it may be tempting to
assume that N, = N/10, which corresponds to ~10 immi-
grants per generation (obtained by replacing N, in egn
(4) with N/10 and solving for Nm). Based on this single
assumption and comprehensive estimates of N, for 37
animal populations (Frankham, 1995¢), we estimate that
about 60% of animal populations require >10 migrants
per generation and that only about 5% require <3
migrants per generation (Fig. 2).

FPS is often the most important factor influencing
long-term N, (Frankham, 1995¢; Vucetich er al., 1997).
Fortunately, FPS can be estimated even if the only data
available are a series of census counts. In such cases,
though, information about N,, /N, will often be lacking.
It is clearly inappropriate, given the current state of
knowledge, to suppose that N,,/N, = 1 (i.e. the popula-
tion is ideal in every way except for temporal fluctua-
tion in size). In the absence of information about N_,/N,,
a crude but clearly more reasonable assumption is that
N,,/N, = 0.5 (e.g. Nunney, 1991, 1993, 1996; Nunney
& Elam, 1994). Applying this assumption to eqn (7)
yields:

B (2+(1n(10)on)2)”(1—F) (8)
Nm=
8F

1.0

08 4
>
Q
o
o :
o 06
g |
[«9)
2
2 044
g
po
(@]

0.2 4

0.0 +—+—+r—rrrrrrrrVr T T T T

0 5 10 15 20 25 30

Migrants per generation

Fig. 2. Cumulative frequency distribution of the number of
migrants (Nm) required to maintain an equilibrium inbreeding
coefficient of 0.2 under three sets of assumptions. [®], eqn (7)
(N, /N assumed to be = 1) applied to o, estimates from 44
animal populations (assumed to be ideal except for fluctua-
tions in size; Vucetich er al., 1997); [M], eqn (8) applied to
the same data (i.e. influence of sex ratio, variance in fecun-
dity and generation overlap assumed to depress N, to N/2);
[A]. estimates for an independent set of 37 animal popula-
tions where all factors known to affect N, were accounted for
explicitly (data from Frankham, 1995b). Dotted lines corre-
spond to the recently suggested rule of thumb of I-to-10
migrants per generation (Mills & Allendorf, 1996).
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This equation is a convenient expression for Nm because
it depends only on ©,, a standard measure whose prop-
erties are well studied (Pimm, 1991). In real populations,
0, 1s commonly <0.25 and rarely >1.0 (Fig. 1). We
emphasize that eqn (8) applies only to cases where N,
/N, = 0.5 represents a reasonable assumption. For exam-
ple, adjusting N,, /N, downward would result in an
inversely proportional increase in the required number
of migrants (relative to that predicted by eqn (8)).

Sensitivity analyses of the effect of naturally-
occurring levels of o, (using eqn (8)) reveal that OMPG
would maintain F's; between 0.35 and 0.4 in populations
with typical levels of o, (i.e. <0.25) (Fig. 3). If F¢ris to
be maintained at ~0.2, then two to three migrants per
generation will be required for populations with g,
< 0.25. Based on the estimates of ¢, for 44 animal pop-
ulations (Vucetich et al., 1997), approximately three-
quarters of animal populations may require >3 migrants
per generation, and one-quarter may require >20
migrants per generation (Fig. 2). Populations with large
values of o, (i.e. >1.0) that receive only OMPG may
have F¢; values exceeding 0.85 (Fig. 3).

The appropriateness of eqn (8) is supported by a
recent coalescent analysis demonstrating that eqn (4a)
applies to fluctuating populations when N, represents the
long-term effective population size (Hudson, 1998; see
also Rannala, 1996). We further evaluated the appropri-
ateness of eqn (8) by conducting a simulation analysis
(written in Borland C++ Builder™ version 3). We sim-
ulated a metapopulation with fluctuating subpopulations,
but with characteristics otherwise conforming to the
standard assumptions of the island model. These simu-
lations represent an extension of analyses where popu-
lation size was constant (Allendorf & Phelps, 1981).
Here, each subpopulation fluctuated according to the fol-
lowing model (Murdoch, 1994):

InN,) =N + a(In(N, | )-N) +r,, 9)

where N,; is the size of subpopulation i in generation f,
o is the autocorrelation in log-transformed population
sizes, and r,; is the log-transformed growth rate, a nor-
mally and independently distributed random variable
with a mean of zero and a variance of ¢°. Because ani-
mal populations typically exhibit dynamics that are inter-
mediate between white noise (& = 0) and Brownian
motion (& = 1) (Arifo & Pimm, 1995), all simulations
were conducted with o fixed at 0.5. Populations were
not permitted to go extinct (see Hedrick & Gilpin, 1997
for the genetic consequences of extinction). Each sub-
population was also characterized by a single locus with
two alleles (denoted A and «). The initial frequency of
each allele for each subpopulation (p,,) was 0.5. The
most straightforward way to simulate genetic processes
within subpopulation i would be to draw 2N,; alleles,
independently and randomly. However, to provide an
appropriate comparison with eqn (8), which assumes
N, /N, = 0.5, we selected 2N, ,; (= (2N, ;)/2) alleles. Each
allele was selected from the gene pool of subpopulation
i with probability (1-m) and subpopulation j (where j is
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randomly selected and j#/) with probability m. Then
allele A was selected with probability p,; for resident
parents and p,; for immigrant parents. Selection and
mutation were not modelled in these simulations. For
each of the 40 subpopulations comprising the meta-
population, the average inbreeding coefficient in gener-
ation ¢ (which is denoted Fg¢p,) was calculated as
Fsripn = 1= (Hgy/Hy,), where Hy, and Hg, are the
heterozygosities of the total population and each sub-
population, respectively, and are based on p,; and the
Hardy—Weinberg theorem. To analyze this model we
estimated the equilibrium inbreeding coefficient (Fr,
obtained by averaging Fgr, for r € (500, 2000)) for var-
ious values of Nm and o, (manipulated by varying ¢&®
and observing o, in the simulated subpopulations).

Simulation results suggest that eqn (8) is a useful
approximation when o, < 0.50 (Fig. 3), which is typical
for most animal populations (Fig. 1). Equation (8) also
performs well when as many as 20 migrants are received
per generation. However, eqn (8) significantly underes-
timates the effect of FPS on F¢ for given values of
Nm for populations with high levels of o, (i.e. >0.50)
(Fig. 3). Consistent with eqns (3)-(4) and (7)—(8) the
simulation results are independent of N (result not
shown), except that N must be sufficiently high (or g,
sufficiently low) so that significant drift does not occur
at the metapopulation level. For example, when g, >1.0,
N must exceed 400 to avoid significant drift in the
metapopulation. However, for g, <0.5, N can be less
than 100 without leading to significant drift in the
metapopulation. Complete characterization of the inter-
actions among migration, fluctuation in population size,
and Fgr when drift occurs in the metapopulation is
beyond the scope of this paper (see Barton & Whitlock,
1997, Hedrick & Gilpin, 1997). When drift in the
metapopulation is significant, conclusions about
gene flow should be based on specifically tailored
simulations. o

To maintain Fg; at a particular value, Nm increases
exponentially with increases in o, (Fig. 4). At least two
migrants per generation are required to maintain Fr at
0.2 for any level of o,. For some populations, fitness
may not be maintained unless Fg¢r <0.2. For example,
maintaining F¢; at 0.1 may require as many as 10
migrants per generation for populations with commonly
observed values of o, (i.e. 0, <0.5). Alternatively, the
viability of some popoulation may be maintained for F¢;
>0.2 (see Frankham, 1995b). In such populations, fewer
migrants may be required to avoid inbreeding depres-
sion. For example, if fitness is maintained at F¢ values
as high as 0.5, then less than OMPG may be required
(Fig. 4). In extreme cases, where a population’s fitness
might be maintained at Fy; values as high as 0.95 (see
Frankham, 19955b), perhaps only one migrant every 50
generations would be required for populations with typ-
ical levels of FPS (i.e. g, <0.25). At the other extreme,
however, >10 and perhaps as many as 100 migrants per
generation may be required to maintain Fg at 0.2 in pop-
ulations with high levels of FPS (i.e. g, >0.75). The pat-
terns of underestimation in eqn (8) (see Fig. 3) suggest
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Fig. 3. Equilibrium inbreeding coefficient (F) for hypothetical
populations experiencing various levels of temporal fluctua-
tion in size (measured as 0,) and receiving various numbers
of migrants per generation. Curves generated from eqn (8).
Symbols represent the results of simulations described in the
main text.
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Fig. 4. Influence of temporal fluctuation in population size (o)
on the number of migrants per generation (Nm) required to
maintain the equilibrium inbreeding coefficient (F) at various
values. Curves generated from eqn (8). F (inbreeding coeffi-
cient) values are: [¢], 0.1; —, 0.2; ——, 0.5; - , 0.9.

that the results of Fig. 4 also underestimate the number
of migrants required for ¢, >0.5.

Correlates of ¢, (Pimm, 1991) may give rise to cor-
responding patterns in Nm. Invertebrate populations are
often characterized by higher values of o, than are ver-
tebrate populations, and thus may typically require more
migrants per generation. In a sample of 16 invertebrate
populations (Vucetich ef al., 1997), the median o, was
0.72. For this value, without even considering other fac-

tors that also tend to inflate the required number of
migrants, >11 migrants per generation are required to
maintain Fg; at 0.2 (OMPG would maintain F at 0.74).
By contrast, in a sample of 28 vertebrate populations
(Vucetich et al., 1997), the median ¢, was 0.27. For this
value, roughly three migrants per generation are required
to maintain Fgr at 0.2 (OMPG would maintain Fg at
0.41). Future analysis may reveal finer-scale taxonomic
patterns in FPS and hence Nm.

CONCLUSIONS

We have evaluated the possibility that more than one
migrant per generation may be required for the genetic
management of conserved, isolated populations. By
relaxing just a single ideal assumption (i.e. by recog-
nizing that real populations fluctuate in size), our analy-
sis reveals that 3—10 migrants may often be required to
maintain a particular level of inbreeding (Fig. 2, see
curve corresponding to eqn (7)). These results, signifi-
cantly, were clearly anticipated by results of an inde-
pendent modelling approach based on joining diffusion
processes that represent population demography and
genetic drift (see Figure 5 in Vucetich & Waite, 1999).
We also emphasize that the application of our conclu-
sions extend beyond populations that exhibit severe, dis-
crete bottlenecks. Rather, our conclusions apply to
fluctuations that include the cumulative effect of smaller,
continuous variations in size (as well as severe, discrete
bottlenecks) and any excursion above or below the mean
population size. Moreover, because additional assump-
tions of the OMPG rule are routinely violated (Mills &
Allendorf, 1996; see also Lacy, 1987), this recommen-
dation is overly optimistic. Our analysis thus suggests
that >10 migrants per generation are required to con-
serve the genetic diversity of many animal populations
(Fig. 2).
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